Artifact Reduction Basic Short Course

Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

This Presentation ...

- discusses pragmatic and efficient approaches to reduce artifacts, such as
 - beam hardening artifacts,
 - cone-beam artifacts,
 - scatter artifacts,
 - metal artifacts, ...
- does not discuss iterative reconstruction techniques that may be less susceptible to artifacts due to improved modeling
- does not discuss artifact avoidance techniques such as
 - special trajectories (to avoid cone-beam artifacts),
 - flying focal spot (to reduce sampling artifacts),
 - spectral shaping (to reduce beam hardening),
 - anti scatter grids or the iPMSE technique (to reduce scatter artifact),
 - beta blockers (to reduce motion artifacts), ...

More or Less Artifacts?

Less artifacts due to

- new clinical CT detectors with extremely low electronic noise
- better x-ray tubes and spectral shaping in clinical CT
- improved anti-scatter grids in clinical CT
- shorter rotation times in clinical CT
- smaller detector pixels
- More artifacts due to

— ...

- more applications in flat detector CT
- low x-ray power in flat detector CT
- less efficient anti-scatter grids in flat detector CT
- long rotation times in flat detector CT
- flat detetors with significant flaws: afterglow, electronic noise, low absorption efficiency, low stability, low dynamic range, ...

In-plane resolution: 0.4 ... 0.7 mm Nominal slice thickness: $S = 0.5 \dots 1.5$ mm Tube (max. values): 120 kW, 150 kV, 1300 mA Effective tube current: mAs_{eff} = 10 mAs ... 1000 mAs Rotation time: $T_{rot} = 0.25 \dots 0.5$ s Simultaneously acquired slices: $M = 16 \dots 320$ Table increment per rotation: $d = 1 \dots 183$ mm Scan speed: up to 73 cm/s Temporal resolution: 50 ... 250 ms

Siemens Vectron

Toshiba Megacool Vi

Lell et al., Invest. Radiol. 50(9):629-644, September 2015

120 kV + 0 mm water with and without prefilter

120 kV + 320 mm water with and without prefilter

Beam Hardening

- Measurement $q = -\ln \int dE \, w(E) e^{-\int dL \, \mu(\boldsymbol{r}, E)}$
- Single material approximation: $\mu(r, E) = f_1(r)\psi_1(E)$

$$q = -\ln \int dE \, w(E) e^{-p_1 \psi_1(E)}$$

 \rightarrow cupping, first order BH artifacts \rightarrow cupping correction (water precorrection)

• Two material case: $\mu(r, E) = f_1(r)\psi_1(E) + f_2(r)\psi_2(E)$

$$q = -\ln \int dE \, w(E) e^{-p_1 \psi_1(E)} - p_2 \psi_2(E)$$

 \rightarrow banding artifacts, higher order BH artifacts \rightarrow higher order BH correction

First Order Beam Hardening

32 cm Water Phantom

Phantom with Water Precorrection

Analytical Cupping Correction

- Know the detected spectrum, e.g. $w(E) \propto E I(E) \left(1 - e^{-\mu_{\rm D}(E)} d_{\rm D}\right)$
- Assume the object to be decomposed as

such that $q = -\ln \int dE w(E) e^{-\int dL p \psi(E)}$ with $p = \int dL f(r)$

 $\mu(\boldsymbol{r}, E) = f(\boldsymbol{r})\psi(E)$

• Invert to get p = P(q)

Empirical Cupping Correction (ECC)

 \boldsymbol{n}

 \boldsymbol{n}

Series expansion of the precorrection function

$$p = P(q) = \sum c_n P_n(q) = \sum c_n q^r$$

Go to image domain by reconstructing qⁿ

$$f_n(\boldsymbol{r}) = \mathsf{X}^{-1} P_n(q) = \mathsf{X}^{-1} q^n$$

n

Find coefficients from

$$f(\boldsymbol{r}) = \mathsf{X}^{-1}p = \mathsf{X}^{-1}P(q) = \sum c_n f_n(\boldsymbol{r})$$

ECC Template Image

$$c = \arg\min_{c} \int d^3 r w(r) (f(r) - t(r))^2$$

$$f(\boldsymbol{r}) = \sum_{n} c_{n} f_{n}(\boldsymbol{r})$$

Results: Water Phantom

Orig (Mean±4Sigma)

ECC (Mean±4Sigma)

Results: Mouse Scan

No correction (Mean±4Sigma)

ECC (Mean±4Sigma)

Higher Order Beam Hardening

Image domain algorithms, such as the scaling method, do not account for higher order beam hardening effects. They can recover the attenuation correction factors (ACF) only to a first order of approximation.

Energy Dependence of Attenuation

Many Materials (typically requires iterative BHC)

- Assume $\mu(E, \mathbf{r}) = \sum_{i} \psi_i(E) g_i(\mathbf{r}) = \psi(E) \cdot g(\mathbf{r})$ Let $q = \chi_g g = -\ln \int dE w(E) e^{-\psi(E)} \cdot \mathbf{p}$

with
$$p_i = Xg_i = \int dL g_i(\boldsymbol{r})$$

 For beam hardening correction we need to recover $g_i(r)$ for all materials present. Then we can convert to any desired E_0 as

$$\mu(E_0,oldsymbol{r}) = \sum_i \psi_i(E_0) g_i(oldsymbol{r})$$

Iterative BHC

with

initial water-precorrected CT image

(or rawdata)

desired BHC-corrected / CT image

 $X_f f = \overline{X_g g}$ $B_f f = B_g g = g - (1 - B_g)g$ $g = B_f f + (1 - B_g)g$

$$\mathsf{B}_{f} = \mathsf{X}^{-1}\mathsf{X}_{f}$$
$$\mathsf{B}_{g} = \mathsf{X}^{-1}\mathsf{X}_{g}$$

Numerically superior expressions:

$$g = f + (\mathsf{B}_f - \mathsf{B})f + (\mathsf{B} - \mathsf{B}_g)g$$
 with $\mathsf{B} = \mathsf{X}^{-1}\mathsf{X}$

$$g^{(n+1)} = f + (\mathsf{B}_f - \mathsf{B})f + (\mathsf{B} - \mathsf{B}_g)g^{(n)}$$
 with $g^{(0)} = f$

Shortcut:
$$g^{(1)} = f + \mathsf{X}^{-1}(\mathsf{X}_f - \mathsf{X}_g)f$$

Phantom Measurements Spiral 64-Slice CT Scan at 120 kV

Original Image

BHC Image

Original minus BHC

- BHC removes capping
- BHC removes dark streaks
- BHC recovers the true CT values

 $\rho_{\rm PE} = 0.93 \,\rho_{\rm W} = -70 \,\rm HU$ $\rho_{\rm HA400} = 1.27 \,\rho_{\rm W} = 270 \,\rm HU$

Patient Data Spiral 4-Slice CT Scan at 120 kV

Original Image

BHC Image

Original minus BHC

Empirical Beam Hardening Correction (EBHC)

Requirements/Objectives

- Empirical correction of <u>higher order</u> beam hardening effects
- No assumptions on attenuation coefficients, spectra, detector responses or other properties of the scanner
- Image-based and system-independent method

Overview of correction steps

- Forward project segmented bone volume to obtain artificial rawdata
- Pass the artificial rawdata through basis functions
- Reconstruct the basis functions
- Linearly combine the correction volumes and the original volume using flatness maximization

EBHC Details

• Decomposition into an effective water-equivalent density $\hat{f}_1(r)$ of the object and into an effective energy dependence $\hat{\psi}_2(E)$ of a second material, e.g. bone

$$\mu(\mathbf{r}, E) = f_1(\mathbf{r})\psi_1(E) + f_2(\mathbf{r})\psi_2(E) = (f_1(\mathbf{r}) + f_2(\mathbf{r}))\psi_1(E) + f_2(\mathbf{r})(\psi_2(E) - \psi_1(E)) = \hat{f}_1(\mathbf{r})\psi_1(E) + f_2(\mathbf{r})\hat{\psi}_2(E).$$

Assuming water-precorrected data gives

$$\int dE \, w(E) e^{-p_0 \psi_0(E)} = \int dE \, w(E) e^{-\hat{p}_1 \psi_1(E)} - p_2 \hat{\psi}_2(E)$$

where \hat{p}_1 and p_2 are the line integrals through $\hat{f}_1(r)$ and $f_2(r)$

EBHC Details

- We solve for $\hat{p}_1(r)$ using a series expansion

• Empirically find c_{11} and c_{02} to correct initial image by flatness maximization

EBHC for Clinical CT

EBHC: Clinical CT vs. FD-CT

Further Reading

- Yunsong Zhao, and Mengfei Li. Iterative Beam Hardening Correction for Multi-Material Objects. PLoS ONE 10(12):1-13, December 2015.
- Hyoung Suk Park, Dosik Hwang, and Jin Keun Seo. Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector. IEEE TMI 35(2):480-487, September 2015.
- Rune Slot Thing, Uffe Bernchou, Ernesto Mainegra-Hing, Olfred Hansen, and Carsten Brink. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy. Phys. Med. Biol. 61(15):5781-5802, July 2016.

Scatter Artifact Reduction

Several algorithmic methods found in the literature:

- Monte Carlo-based (slow but good)
- Convolution-based (fast, but not accurate)
- Simple subtraction methods (even faster, but less accurate)

Hardware-based methods

- Anti scatter grid
- Beam blockers
- Primary modulators

- ...

— ...

Scatter Estimation

Monte Carlo-based

Measured intensities (primary plus scatter)

Convolution-based

Measured intensities (primary plus scatter)

* Ohnesorge et al., Efficient scatter correction algorithm for third and fourth generation CT scanners, Eur. Radiol., 9, 563-569 (1999).

Phys. Med. Biol. 57(21):6849-6867, October 2012.
Number of Calibration Steps

Number of Photons

Monochromatic simulation study in clinical CT geometry Scatter simulation by Monte Carlo

N_{Ph,ref}: Photon number for the low noise reference Monte Carlo simulation used for the uncorrected image

 $N_{cal} = 16$

Scatter Correction Results

Measurements in cone-beam CT geometry

Reference image: Pure Monte Carlo scatter correction and EBHC for beam hardening.

Hybrid scatter correction (HSC): Monte Carlo simulation for only 16 projections and 100 times less photons than in the pure Monte Carlo correction.

Additionally the empirical beam-hardening correction (EBHC*) method was applied to correct for beam-hardening artifacts.

*Kyriakou, Y.; Meyer, E.; Prell, D.; Kachelrieß, M.; Empirical Beam Hardening Correction (EBHC) for CT, Med. Phys. 37, 5179-87 (2010).

Further Reading

- Wei Zhao, Don Vernekohl, Jun Zhu, Luyao Wang, and Lei Xing. A model-based scatter artifacts correction for cone beam CT. Medical Physics 43 (1736), March2016.
- Ernst-Peter Rührnschopf and Klaus Klingenbeck. A General Framework and Review of Scatter Correction Methods in X-Ray Cone-Beam Computerized Tomography. Part 1: Scatter Compensation Approaches. Med. Phys. 38(7):4296-4311, July 2011.
- Ernst-Peter Rührnschopf and Klaus Klingenbeck. A General Framework and Review of Scatter Correction Methods in X-Ray Cone-Beam Computerized Tomography. Part 2: Scatter Estimation Approaches. Med. Phys. 38(9):5186-5199, September 2011.

Metal Artifacts are

+ increased susceptibility to sampling artifacts and motion.

Metal Artifact Reduction (MAR)

- Physics-based metal artifact reduction (not discussed here – my colleague Joscha Maier gave sufficient details on Wednesday) should comprise beam hardening correction, scatter correction, and corrections for the beam shape and sampling.
- MAR typically refers to inpainting the projection values that are influenced by the metal. This is a hollow projection problem and completely ignores the underlying physics.
- Detect metal contents
 - in image domain (very reliable, simple thresholding suffices)
 - in rawdata domain (not reliable, but many attempts)
- Inpaint the hollow projections
 - by simple interpolation
 - by sophisticated anisotropic methods
 - with or without normalization techniques.

Linear Interpolation MAR (LIMAR)

Normalized MAR (NMAR)

Results and Comparison: Patient Data

Uncorrected

LIMAR

NMAR

Patient with hip implants, Sensation 16, 140 kV, (C = 0 HU, W = 500 HU)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

Results and Comparison: Patient Data

Uncorrected

LIMAR

NMAR

Patient with hip implants, Sensation 16, 140 kV, (C = 0 HU, W = 500 HU)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

Results and Comparison: Patient Data

Uncorrected LIMAR NMAR

Patient dental fillings, slice 110, Somatom Definition Flash, pitch 0.9. Top row: (C = 100 HU, W = 750 HU). Bottom row: (C = 1000 HU, W = 4000 HU)

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

FSMAR: Scheme

FSMAR: Results

Uncorrected

LIMAR

NMAR

Patient with spine fixation, Somatom Definition, (C=100/W=1000).

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Frequency split metal artifact reduction (FSMAR) in computed tomography", Med. Phys. 39(4):1904-1916, 2012.

NMAR: Results

Uncorrected

NMAR

Bone removal (with scanner software), (C=40/W=500).

Meyer, Raupach, Lell, Schmidt, and Kachelrieß, "Normalized metal artifact reduction (NMAR) in computed tomography", Med. Phys. 37(10):5482-5493, 2012.

DECT

and Pseudo Monochromatic Imaging

Pseudo monochromatic imaging is a linear combination of DECT f_L and f_H : $f_{\alpha} = (1 - \alpha) f_L + \alpha f_H$

Original

DEMAR

IMAR (FSNMAR)¹

 α = 1.61, *E* = 176 keV

Patient 3 100 kV

DEMAR not applicable since this is a single energy CT scan.

¹Iterative metal artifact reduction (IMAR) is the Siemens product implementation of FSNMAR.

Further Reading

- Maik Stille, Matthias Kleine, Julian Haegele, Jörg Barkhausen, and Thorsten M. Buzug. Augmented Likelihood Image Reconstruction. IEEE Transactions on Medical Imaging 35(1), 158–173, July 2015.
- Webster J. Stayman, Yoshito Otake, Jerry L. Prince, Jay A. Khanna, and Jeffery H. Siewerdsen. Model-based tomographic reconstruction of objects containing known components. IEEE Transactions on Medical Imaging 31(10), 1837–1848, October 2012.
- Yi Zhang, Yifei Pu, Jin-Rong Hu, Yan Liu, Ji-Liu Zhou. A new CT metal artifacts reduction algorithm based on fractional-order sinogram inpainting. J Xray Sci Technol. 19(3), 373-84, January 2011.

Cone-Beam Artifacts

Cone-Beam Artifact Correction Method

1. Reconstruct an image $f^{(0)}$ from the rawdata p, e.g. by performing a filtered backprojection X^{-1} :

$$\mathbf{f}^{(0)} = \mathsf{X}^{-1}p$$

- 2. Apply a segmentation S to the reconstructed volume $f^{(0)}$:
- $f_S = Sf^{(0)} \longleftarrow prior \ knowledge \ enters \ here$ 3. Perform a forward projection and reconstruction of f_S : $f^{(1)} = X^{-1}Xf_S$

 $\mathbf{f}_{\text{out:footo}} = \mathbf{f}_{\text{C}} - \mathbf{f}^{(1)}$

4. Subtract the volume f_S from the resulting volume $f^{(1)}$:

5. Remove the artifacts
$$f_{artifacts}$$
 from the original volume $f^{(0)}$:

$$oldsymbol{f}_{ ext{final}} = oldsymbol{f}^{(0)} - oldsymbol{f}_{ ext{artifacts}}$$
 $oldsymbol{f}_{ ext{final}} = oldsymbol{f}^{(0)} - (oldsymbol{f}_S - X^{-1}Xoldsymbol{f}_S)$

Cone-Beam Artifact Correction Method

- The method is less efficient without the segmentation step (but still shows positive effects)
- It is less efficient without data redundancies, e.g. in case of
 - short scans
 - shifted detector scans
- We demonstrate issues measuring a skull phantom in shifted detector geometry with a (simulated) small FOM (data truncation) flat detector CT.

Weighting and Detruncation

Rawdata for preweighted shifted detector FDK

Rawdata for postweighted shifted detector FDK (simple extrapolation)

Rawdata for postweighted shifted detector FDK (super extrapolation)

C = 3; W = 6

Note: Post weighting shifted detector recon is not exact in the midplane. But it may have favourable artifact behaviour.

FDK Preweight

shifted detector scan 360°

Midplane

FDK Preweight Cone-Beam Corrected

shifted detector scan 360°

Midplane

FDK Preweight

shifted detector scan 360°

Midplane

FDK Postweight

shifted detector scan 360°

Midplane

FDK Postweight Super Extrapolation

shifted detector scan 360°

Midplane

FDK Preweight Cone-Beam Corrected

shifted detector scan 360°

Midplane

FDK Postweight Super Detruncation Cone-Beam Corrected

shifted detector scan 360°

Midplane

Further Reading

- Dirk Schäfer, Michael Grass, and Peter van de Haar. FBP and BPF reconstruction methods for circular Xray tomography with off-center detector. Med. Phys. 38(7): S85-S94, July 2011.
- Jed D. Pack, Kai Zeng, Adam Budde, Zhye Yin, Bruno De Man. Mitigating cone-beam artifacts via shiftvariant data usage for large cone-angle scans. Conference Program of the 3rd International Conference on Image Formation in X-Ray Computed Tomography:307-310, June 2014.

Adaptive Detruncation Method (ADT)

K. Sourbelle, M. Kachelrieß, and W.A. Kalender, "Reconstruction from truncated projections in CT using adaptive detruncation," Eur Radiol 15:1008–1014, 2005.

Adaptive Detruncation Method (ADT)

K. Sourbelle, M. Kachelrieß, and W.A. Kalender, "Reconstruction from truncated projections in CT using adaptive detruncation," Eur Radiol 15:1008–1014, 2005.

Adaptive Detruncation Method (ADT)

K. Sourbelle, M. Kachelrieß, and W.A. Kalender, "Reconstruction from truncated projections in CT using adaptive detruncation," Eur Radiol 15:1008–1014, 2005.

Example : 2 × 200 suppressed columns

(00/1000)

(09 / 20)

Original Original Original Original Original

ADT corrected (clipped)

Original – Corrected (clipped)

$$\label{eq:massed} \begin{split} \textbf{M} &= \textbf{0.5} \ \textbf{HU}, \ \sigma = \textbf{10.3} \ \textbf{HU} \\ \textbf{M} &= \textbf{1.5} \ \textbf{HU}, \ \sigma = \textbf{1.4} \ \textbf{HU} \end{split}$$

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.