CT Image Reconstruction

Marc Kachelrieß^{1,2}

Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany ²German Cancer Research Center (DKFZ), Heidelberg, Germany

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Fan-Beam Geometry (transaxial / in-plane / x-y-plane)

field of measurement (FOM) and object

x-ray tube

detector (typ. 1000 channels)

Sinogram, Rawdata

In the order of 1000 projections with 1000 channels are acquired per detector slice and rotation.

Data Completeness

Each object point must be viewed by an angular interval of 180° or more. Otherwise image reconstruction is not possible.

Data Completeness

Any straight line through a voxel must be intersected by the source trajectory at least once.

Analytical Image Reconstruction

dkfz.

Modified from Johan Nuyts, "New image reconstruction techniques", ECR 2012

2D: In-Plane Geometry

- Decouples from longitudinal geometry in many cases
- Useful for many imaging tasks
- Easy to understand
- 2D reconstruction options
 - Rebinning (resampling, resorting) to parallel beam geometry, followed by filtered backprojection (FBP)
 - Rebinning to parallel beam geometry followed by Fourier inversion
 - Filtered backprojection in the native fan-beam geometry
 - Backprojection filtration (BPF)
 - Expansion methods (representation of rawdata and image as series of orthogonal functions)

Fan-beam geometry

Parallel-beam geometry

In-Plane Parallel Beam Geometry

Measurement:

 $p(\vartheta,\xi) = \int dx dy f(x,y) \delta(x\cos\vartheta + y\sin\vartheta - \xi)$

Filtered Backprojection¹ (FBP)

Measurement: $p(\vartheta, \xi) = \int dx dy f(x, y) \delta(x \cos \vartheta + y \sin \vartheta - \xi)$ Fourier transform:

$$\int d\xi \, p(\vartheta,\xi) e^{-2\pi i\xi u} = \int dx dy \, f(x,y) e^{-2\pi i u (x\cos\vartheta + y\sin\vartheta)}$$

This is the central slice theorem: $P(\vartheta, u) = F(u\cos\vartheta, u\sin\vartheta)$ Inversion: $f(x, y) = \int_{0}^{\pi} d\vartheta \int_{-\infty}^{\infty} du |u| P(\vartheta, u) e^{2\pi i u (x\cos\vartheta + y\sin\vartheta)}$ $= \int_{0}^{\pi} d\vartheta p(\vartheta, \xi) * k(\xi) \Big|_{\xi = x\cos\vartheta + y\sin\vartheta}$

¹Ramachandran and Lakshminarayanan. Proc. Nat. Acad. Sci. USA, 1971.

Filtered Backprojection (FBP)

1. Filter projection data with the reconstruction kernel.

2. Backproject the filtered data into the image:

Reconstruction kernels balance between spatial resolution and image noise.

Backprojection

Parallel-Beam Geometry

Parallel Backprojection: Geometry

voxel position projection data slice number or position $f(\mathbf{r}) = \int d\vartheta \ p(\vartheta, \xi(\vartheta, \mathbf{r}), z)$

reconstructed slices

$$\xi(\vartheta, \mathbf{r}) = c_0 x + c_1 y + c_2 \qquad c_i = c_i \theta$$

trajectory parameter

 ϑ

distance of ray to origin

transform coefficients

Parallel-Beam Geometry $f = c_0 x + c_1 y + c_3$

Parallel Backprojection: Reference Implementation

```
void ParBackProjRefLI(float * const Vol, int const I, int const J, int const K,
                      float const * const Raw, int const N, int const M,
                      float const * const c0, ..., float const * const c2)
    for(int n=0; n<N; n++) // projection index (theta)</pre>
    for(int i=0; i<I; i++) // slow voxel index (x)
    for(int j=0; j<J; j++) // med. voxel index (y)</pre>
        $
        float const mreal=c0[n]*i+c1[n]*j+c2[n]; // detector channel index (xi)
          int const m =int(mreal); // lower sample position
        float const wm=mreal-m; // linear interpolation weight
        for (int k=0; k<K; k++) // fast voxel and detector row index (z)
            #define V(i, j, k) Vol(((i)*J+j)*K+k] // linear memory layout, use V and
            #define R(n, m, k) Raw[((n)*M+m)*K+k] // R as shortcuts for Vol and Raw
            V(i, j, k) += (1-wm) * R(n, m, k) + wm * R(n, m+1, k);
            #undef V
            #undef R
            3
        3
```


2D Fan-Beam FBP

- Some fan-beam geometries lend themselved to filtered backprojection without rebinning¹.
- Among those geometries the geometry with equiangular sampling in β , i.e. in steps of $\Delta\beta$, is the most prominent one (although not necessarily optimal).
- The second most prominent geometry that allows for filtered backprojection in the native geometry is the one corresponding to a flat detector.
- The fourth generation CT geometry does not allow for shift-invariant filtering, unless the distance $R_{\rm F}$ of the focal spot to the isocenter equals the radius $R_{\rm D}$ of the detector ring.

2D Fan-Beam FBP

Classical way (coordinate transform):

$$f(\boldsymbol{r}) = \frac{1}{2} \int_{0}^{2\pi} d\alpha \frac{1}{|\boldsymbol{r} - \boldsymbol{s}(\alpha)|^2} R_{\mathrm{F}} \cos\beta q(\alpha, \beta) * k(\sin\beta) \Big|_{\beta = \hat{\beta}(\alpha, \boldsymbol{r})}$$

Modern way¹ (inspired by Katsevich's work):

$$f(\boldsymbol{r}) = \frac{1}{2} \int_{0}^{0} d\alpha \frac{1}{|\boldsymbol{r} - \boldsymbol{s}(\alpha)|} \left(\partial_{\beta} - \partial_{\alpha}\right) q(\alpha, \beta) * K(\sin\beta) \Big|_{\beta = \hat{\beta}(\alpha, \boldsymbol{r})}$$

• Parallel beam FBP for comparison: 2π

 2π

$$f(m{r}) = rac{1}{2} \int dartheta \, p(artheta, \xi) * k(\xi) \Big|_{m{\xi} = \hat{m{\xi}}(artheta, m{r})} \left[\hat{eta}(lpha, m{r}) = -\sin^{-1} rac{x \cos lpha + y \sin lpha}{|m{r} - m{s}(lpha)|}
ight]$$

$$\hat{\xi}(\vartheta, \boldsymbol{r}) = x \cos \vartheta + y \sin \vartheta$$

¹F. Noo et al. Image reconstruction from fan-beam projections on less than a short scan. PMB 2002.

Spiral z-interpolation is typically a linear interpolation between points adjacent to the reconstruction position to obtain circular scan data.

without *z*-interpolation

with z-interpolation

180° Spiral z-interpolation interpolates between direct and complementary rays.

Spiral z-filtering is collecting data points weighted with a triangular or trapezoidal distance weight to obtain circular scan data.

CT Angiography: Axillo-femoral bypass

M = 4

120 cm in 40 s

0.5 s per rotation 4×2.5 mm collimation pitch 1.5

The Pitch Value is the Measure for Scan Overlap

The pitch is defined as the ratio of the table increment per full rotation to the *total* collimation width in the center of rotation:

$$p = \frac{d}{C} = \frac{d}{MS}$$

Recommended by and in:

IEC, International Electrotechnical Commision: Medical electrical equipment – 60601 Part 2-44: Particular requirements for the safety of x-ray equipment for computed tomography. Geneva, Switzerland, 1999.

Examples:

- p=1/3=0.333 means that each z-position is covered by 3 rotations (3-fold overlap)
- *p*=1 means that the acquisition is not overlapping
- $p=p_{max}$ means that each z-position is covered by half a rotation

ASSR: Advanced Single-Slice Rebinning 3D and 4D Image Reconstruction for Medium Cone Angles

- First practical solution to the cone-beam problem in medical CT
- Reduction of 3D data to 2D slices
- Commercially implemented as AMPR
- ASSR is recommended for up to 64 slices

Do not confuse the transmission algorithm ASSR with the emission algorithm SSRB!

Kachelrieß et al., Med. Phys. 27(4), April 2000

The ASSR Algorithm

Kachelrieß et al., Med. Phys. 27(4), April 2000

H. Bruder, M. Kachelrieß, S. Schaller. SPIE Med. Imag. Conf. Proc., 3979, 2000

Vertient Images with ASSR

- High image quality
- High performance
- Use of available 2D reconstruction hardware
- 100% detector usage
- Arbitrary pitch

- Sensation 16
- 0.5 s rotation
- 16×0.75 mm collimation
- pitch 1.0
- 70 cm in 29 s
- 1.4 GB rawdata
- 1400 images

CTA, Sensation 16

CT-Angiography Sensation 64 spiral scan with 2·32×0.6 mm and 0.375 s

Fully 3D Tomographic Imaging e.g. with Flat Detectors

Perspective Geometry detecte $(c_{00}x + c_{01}y + c_{02}z + c_{03})$ $v = (c_{10}x + c_{11}y + c_{12}z + c_{13})w$ $y = 1/(c_{20}x + c_{21}y + c_{22}z + c_{23})$

Feldkamp-Type Reconstruction

- Approximate
- Similar to 2D reconstruction:
 - row-wise filtering of the rawdata
 - followed by backprojection
- True 3D volumetric backprojection along the original ray direction

Perspective Geometry

(x, y, z)

source

detector

Perspective Backprojection: Geometry

voxel position

rojection data

 $f(\mathbf{r}) = \int d\alpha \, w^2(\alpha, \mathbf{r}) \, p(\alpha, u(\alpha, \mathbf{r}), v(\alpha, \mathbf{r}))$

reconstructed volume

 $u(\alpha, \mathbf{r}) = (c_{00}x + c_{01}y + c_{02}z + c_{03})w(\alpha, \mathbf{r})$ $v(\alpha, \mathbf{r}) = (c_{10}x + c_{11}y + c_{12}z + c_{13})w(\alpha, \mathbf{r})$ $w(\alpha, \mathbf{r}) = 1/(c_{20}x + c_{21}y + c_{22}z + c_{23})$

 $c_{ij} = c_{ij}(\alpha)$ trajectory parameter

transform ċoefficients

Perspective Backprojection: Reference Implementation

```
void PerBackProjRefLI(float
                             * const Vol, int const I, int const J, int const K,
                      float const * const Raw, int const N, int const M, int const L,
                      float const * const c00, ..., float const * const c23)
    for(int n=0; n<N; n++) // projection index (alpha)</pre>
    for(int i=0; i<I; i++) // slow voxel index (x)</pre>
    for(int j=0; j<J; j++) // med. voxel index (v)</pre>
    for(int k=0; k<K; k++) // fast voxel index (z)</pre>
        float const w=1/(c20[n]*i+c21[n]*j+c22[n]*k+c23[n]); // distance weight (w)
        float const lreal=w*(c10[n]*i+c11[n]*j+c12[n]*k+c13[n]); // detector row index (v)
        float const mreal=w*(c00[n]*i+c01[n]*j+c02[n]*k+c03[n]); // detector channel index (u)
          int const l =int(lreal); // lower sample position in l
         int const m =int(mreal); // lower sample position in m
        float const wl=lreal-1; // linear interpolation weight in 1
        float const wm=mreal-m; // linear interpolation weight in m
        #define V(i, j, k) Vol(((i)*J+j)*K+k] // linear memory layout, use V and
        #define R(n, m, l) Raw[((n)*M+m)*L+l] // R as shortcuts for Vol and Raw
        V(i, j, k) += w*w*((1-w1)*((1-wm)*R(n, m, 1)+wm*R(n, m+1, 1)) // bilinear interpolation
                           +wl *((1-wm)*R(n, m, 1+1)+wm*R(n, m+1, 1+1))); // and distance weighting
        #undef V
        #undef R
```


Cone-Beam Artifacts

Extended Parallel Backprojection (EPBP) 3D and 4D Feldkamp-Type Image Reconstruction for Large Cone Angles

- Trajectories: circle, sequence, spiral
- Scan modes: standard, phase-correlated
- Rebinning: azimuthal + longitudinal + radial
- Feldkamp-type: convolution + true 3D backprojection
- 100% detector usage
- Fast and efficient

Extended Parallel Backprojection (EPBP) for Circular, Sequential and Spiral CT

C

longitudinally rebinned detector

C: Area used for convolution B: Area used for backprojection

Kachelrieß et al., Med. Phys. 31(6), June 2006

 $p = \frac{d}{MS} \le 1.5$

The (weighted) contributions to each object point must make up an interval of 180° and weight 1.

